Distributed Predictive Control for Energy Hub Coordination in Coupled Electricity and Gas Networks
نویسندگان
چکیده
In this chapter, the operation and optimization of integrated electricity and natural gas systems is investigated. The couplings between these different infrastructures are modeled by the use of energy hubs. These serve as interface between the energy consumers on the one hand and the energy sources and transmission lines on the other hand. In previous work, we have applied a distributed control scheme to a static three-hub benchmark system, which did not involve any dynamics. In this chapter, we propose a scheme for distributed control of energy hubs that do include dynamics. The considered dynamics are caused by storage devices present in the multi-carrier system. For optimally incorporating these storage devices in the operation of the infrastructure, their capacity constraints and dynamics have to be taken into account explicitly. Therefore, we propose a distributed Model Predictive Control (MPC) scheme for improving the operation of the multi-carrier system by taking into account predicted behavior and operational constraints. Simulations in which the proposed scheme is applied to the three-hub benchmark system illustrate the potential of the approach. M. Arnold, G. Andersson ETH Zürich, Power Systems Laboratory, Zürich, Switzerland, e-mail: {arnold,andersson}@eeh.ee.ethz.ch R.R. Negenborn Delft University of Technology, Delft Center for Systems and Control, Delft, The Netherlands, e-mail: [email protected] B. De Schutter Delft University of Technology, Delft Center for Systems and Control & Marine and Transport Technology, Delft, The Netherlands, e-mail: [email protected]
منابع مشابه
Effect of Wind Turbine, Solar Cells and Storages in Short Term Operation of Coupled Electricity and Gas Infrastructures in Different Climates
The biggest challenges faced in big cities are greenhouse gas emission and growing energy needs. Efficient utilization of existing infrastructures has a prominent role in response to the challenges. Energy hub approach embraces performance of different energy networks. Energy hub is defined as a super node in electrical system receiving distinctive energy carriers such as gas and electricity in...
متن کاملEffect of Distributed Energy Resources in Energy Hubs on Load and Loss Factors of Energy Distribution Networks
In this paper, an attempt has been made to introduce a new control strategy including Plug-in Hybrid Electric Vehicle (PHEV) and Diesel engine generator to control the voltage and frequency of autonomous microgrids. The proposed control strategy has multiple advantages over the recent control methods in microgrids. The proposed method applies the primary and secondary frequency control strategy...
متن کاملDecomposed Electricity and Natural Gas Optimal Power Flow
Different energy infrastructures, such as electricity, natural gas and local district heating systems utilized for the energy supply are most often planned and operated independently of each other. This paper addresses the optimization of combined electricity and natural gas networks. The couplings between the two energy infrastructures are taken into account with the novel concept of energy hu...
متن کاملDistributed Control Applied to Multi-Energy Generation Portfolios
In 2004 the Power Systems and High Voltage Laboratories at ETH initiated the research project ”Vision of Future Energy Networks” (VoFEN), which applies a greenfield approach to the design of future energy systems. The main aspect of the project is the consideration of multiple energy carriers, i.e. the analysis is not restricted to electricity but also considers other energy carriers such as na...
متن کاملPredictive Control of Gas Injection in Natural Gas Transport Networks
The present sought to draw a comparison between Model Predictive Control performance and two other controllers named Simple PI and Selective PI in controlling large-scale natural gas transport networks. A nonlinear dynamic model of representative gas pipeline was derived from pipeline governing rules and simulated in SIMULINK® environment of MATLAB®. Control schemes were designed to provide a s...
متن کامل